1,942 research outputs found

    UEFI BIOS Accessibility for the Visually Impaired

    Full text link
    People with some kind of disability face a high level of difficulty for everyday tasks because, in many cases, accessibility was not considered necessary when the task or process was designed. An example of this scenario is a computer's BIOS configuration screens, which do not consider the specific needs, such as screen readers, of visually impaired people. This paper proposes the idea that it is possible to make the pre-operating system environment accessible to visually impaired people. We report our work-in-progress in creating a screen reader prototype, accessing audio cards compatible with the High Definition Audio specification in systems running UEFI compliant firmware.Comment: 6 page

    Novel laser-induced luminescence resulting from benzophenone/O-propylated p-tert-butylcalix[4]arene complexes. A diffuse reflectance study

    Get PDF
    Laser-induced room temperature luminescence of air-equilibrated benzophenone/O-propylated p-tert-butylcalix[ 4] arene solid powdered samples revealed the existence of a novel emission, in contrast with benzophenone/p-tertbutylcalix[ 4] arene complexes, where only benzophenone emits. This novel emission was identified as phosphorescence of 1-phenyl-1,2-propanedione, which is formed as the result of an hydrogen atom abstraction reaction of the triplet excited benzophenone from the propoxy substituents of the calixarene. Room temperature phosphorescence was obtained in air-equilibrated samples in all propylated hosts. The decay times of the benzophenone emission vary greatly with the degree of propylation, the shortest lifetimes being obtained in the tri- and tetrapropylated calixarenes. Triplet - triplet absorption of benzophenone was detected in all cases, and is the predominant absorption in the p-tert-butylcalix[ 4] arene case, where an endo-calix complex is formed. Benzophenone ketyl radical formation occurs with the O-propylated p-tert-butylcalix[ 4] arenes hosts, suggesting a different type of host/guest molecular arrangement. Diffuse reflectance laser. ash photolysis and gas chromatography - mass spectrometry techniques provided complementary information, the former about transient species and the latter regarding the final products formed after light absorption. Product analysis and identification clearly show that the two main degradation photoproducts following laser excitation in the propylated substrates are 1-phenyl-1,2- propanedione and 2- hydroxybenzophenone, although several other minor photodegradation products were identified. A detailed mechanistic analysis is proposed. While the solution photochemistry of benzophenone is dominated by the hydrogen abstraction reaction from suitable hydrogen donors, in these solid powdered samples, the alpha-cleavage reaction also plays an important role. This finding occurs even with one single laser pulse which lasts only a few nanoseconds, and is apparently related to the fact that scattered radiation exists, due to multiple internal reflections possibly trapping light within non-absorbing microcrystals in the sample, and is detected until at least 20 mus after the laser pulse. This could explain how photoproducts thus formed could also be excited with only one laser pulse

    The DNA damage response is developmentally regulated in the African trypanosome

    Get PDF
    Genomes are affected by a wide range of damage, which has resulted in the evolution of a number of widely conserved DNA repair pathways. Most of these repair reactions have been described in the African trypanosome Trypanosoma brucei, which is a genetically tractable eukaryotic microbe and important human and animal parasite, but little work has considered how the DNA damage response operates throughout the T. brucei life cycle. Using quantitative PCR we have assessed damage induction and repair in both the nuclear and mitochondrial genomes of the parasite. We show differing kinetics of repair for three forms of DNA damage, and dramatic differences in repair between replicative life cycle forms found in the testse fly midgut and the mammal. We find that mammal-infective T. brucei cells repair oxidative and crosslink-induced DNA damage more efficiently than tsetse-infective cells and, moreover, very distinct patterns of induction and repair of DNA alkylating damage in the two life cycle forms. We also reveal robust repair of DNA lesions in the highly unusual T. brucei mitochondrial genome (the kinetoplast). By examining mutants we show that nuclear alkylation damage is repaired by the concerted action of two repair pathways, and that Rad51 acts in kinetoplast repair. Finally, we correlate repair with cell cycle arrest and cell growth, revealing that induced DNA damage has strikingly differing effects on the two life cycle stages, with distinct timing of alkylation-induced cell cycle arrest and higher levels of damage induced death in mammal-infective cells. Our data reveal that T. brucei regulates the DNA damage response during its life cycle, a capacity that may be shared by many microbial pathogens that exist in variant environments during growth and transmission

    Caracterização físico-química de acessos de maracujazeiro do banco ativo de germoplasma da Embrapa Mandioca e Fruticultura.

    Get PDF
    Introdução: O Brasil é atualmente o maior produtor de maracujá, logo é de suma importância os estudos e pesquisas cientificas no que diz respeito as espécies comerciais e silvestres. Algumas espécies de maracujazeiro pertencentes ao Banco Ativo de Germoplasma (BAG) de maracujazeiro da Embrapa Mandioca e Fruticultura (Embrapa ? CNPMF) possuem potencial para uso em programas de melhoramento genético, tendo em vista a qualidade dos frutos, a tolerância a doenças e pragas, maior período de florescimento, concentração superior de componentes químicos e outras potencialidades, em sua maioria, ainda subexploradas. Assim, é fundamental que estas estejam caracterizadas e avaliadas. [...]
    corecore